The dawn of in-vitro fertilisation (IVF) was publicised extensively by media outlets worldwide when Louise Brown was born on the 25 July 1978 at the Royal Oldham Hospital, Manchester. Since this point there have been many significant events in the IVF timeline, all playing a part in the journey to treating infertility. In 2013, the UK played host to one of these potentially revolutionary moments – the birth of the first babies assisted by automated and predictive time-lapse imaging technology, the Early Embryo Viability Assessment (Eeva™ Test).

IVF has moved a long way in the 35 years spanning these events; latest available figures show that the birth rate following IVF has risen from around 14% in 1991 to approximately 35% in 2012 in the UK,[1] with an estimated 2% of babies born per annum as a result of the technique.[2] Estimating numbers is difficult due to challenges in defining what constitutes higher order fertility treatment, but available data suggests that IVF is being increasingly utilised as a treatment modality for couples with severe infertility.[3] The hands-on nature of laboratory processes is drawing upon its heritage in the field to push for the gold-standard in optimisation, standardisation and delivery of artificial reproduction laboratory techniques. The ultimate aim of this is to best support UK healthcare professionals in helping patients realise their dream of welcoming a baby into the world.

The Eeva™ Test: The potential to change the future of IVF?

‘Eeva gives us the opportunity to evaluate an embryo’s odds in a way less invasive than a genetic biopsy, but more accurate than using the analysis of the structure and form of the embryo – its morphology – alone,’ explains Dr Marco Gaudoin, Medical Director of the Glasgow Centre for Reproductive Medicine. Dr Gaudoin and his team were responsible for supportive new data made available earlier this year at the annual meeting of the European Society for Human Reproduction and Embryology (ESHRE), which showed that the use of Eeva may encourage single embryo transfer practice, with the potential to reduce the incidence of multiple births. ‘This data has real significance given the fact that multiple births are associated with a higher risk of adverse outcomes both in the lead up to, and after, birth.’

Remaining true to the improvement of fertility technologies, in June this year Merck Serono announced the launch of the next generation of the Eeva Test, Eeva 2.3[4,5] which utilises an improved multi-dimensional algorithm – the Xtd Algorithm – designed to offer more assessment options to help better distinguish embryos with higher developmental potential.[6] The technology captures a more complete picture of embryo development, addressing the demand for more objectivity and standardisation within assisted reproductive technology.[7]

The Xtd Algorithm was created following a rigorous research and development process, which investigated over 1,000 potential combinations of parameters before determining the most relevant ones for improving the chance of identifying embryos with the highest potential for success, when used alongside traditional morphological grading.[8]

As the provider of the Eeva Test in the UK, and a world leader in fertility treatment, Merck Serono has made a commitment to the advancement of the fertility products and technologies of tomorrow. A pioneer in fertility medications, the company is drawing upon its heritage in the field to push for the gold-standard in optimisation, standardisation and delivery of artificial reproduction laboratory techniques. The ultimate aim of this is to best support UK healthcare professionals in helping patients realise their dream of welcoming a baby into the world.

For further information, contact:

Merck Serono
Bedford Cross, Stanwell Road
Feltham, Greater London
TW14 1RA

For medical information enquiries please contact:
Phone: +44 (0)20 8818 7373
Email: medinfo.uk@merckgroup.com

This product complies with the current legislation of medical devices. Eeva has received CE Mark approval to be marketed as a commercial medical device wherever the CE Mark applies.

Manufactured by Progensa, Inc.

References
